分享到:

中山市中艾电子有限公司坚持“以人为本、以诚致胜、务实创新、与时俱进”的企业理念

您的当前位置:华企黄页分类信息>中山市中艾电子有限公司>照明工业>电光源材料>LED防水驱动电源推动LED照明产业是全球能耗的

LED防水驱动电源推动LED照明产业是全球能耗的

2013年06月27日 11:00:54 发布

又保持了相应的热稳定性、耐热性。 总体来说目前LED的发光效率还是比较低,LED防水驱动电源
又保持了相应的热稳定性、耐热性。


总体来说目前LED的发光效率还是比较低,LED防水驱动电源

  照明用电是全球能耗的一项重要来源。据推算,中国照明用电约占全社会用电量的12%左右。在各种照明灯具中,历史悠久但能效较低的白炽灯的应用仍然非常广泛,如果限制低能效光源的使用、同时大力地推广及应用更高能效及环保的光源,将利于节能。

  因此,包括中国在内,世界上多个国家制定政策,分阶段淘汰白炽灯泡。如中国计划于2015年60W 以上普通照明用白炽灯泡全部淘汰。荧光灯及紧凑型荧光灯(CFL)的能效比白炽灯高,在市场上已经应用多年。但荧光灯含剧毒物质汞,所引发的环保顾虑越来越多。

  相比较而言,LED在发光效率等各方面的性能不断提升,还兼具环保及长寿命特性,越来越受重视。实际上,LED筒灯和改装灯泡已经拥有比白炽灯、卤素灯或CFL等现在照明技术更高的能效。而在成本方面,研究发现,与2010年相比,LED的价格已经加速下降(每年下降13%至24%),预计未来几年仍会持续下降,将帮助降低LED灯泡及灯具的成本。

  因此,世界各国纷纷看好及推动LED照明产业的发展。例如,中国国家发改委发布《半导体照明节能产业规划》,规划到2015年LED功能性照明产品市场占有率达20%以上,LED照明节能产业产值年增长30%左右,2015年产值达4,500亿元(折合720亿美元)。

  LED通用照明应用及发展前景

  LED除了广泛应用移动设备、中大尺寸液晶显示屏(LCD)背光及LED标牌等领域外,如今也在越来越多地用于LED汽车内部/外部照明,如前照灯、雾灯、尾灯、停车灯、仪表盘背光、车顶灯、阅读灯和氛围灯等,以及住宅照明和建筑物装饰照明等LED通用照明。

  LED通用照明应用覆盖宽广功率范围,低至3 W到15 W的LED住宅照明,中等功率有如15 W至75 W的商业及建筑物装饰性照明,高至75 W到250 W的户外及基础设施照明,典型照明产品有如MR16/GU10灯、E27/A19灯泡、镇流器、筒灯、T8灯管、街灯等。


  图1:典型LED通用照明应用

  LED通用照明应用极具发展前景。各种LED通用照明灯具中,近期来看,LED灯泡(如A19 LED灯泡)的发展势头惊人。据统计,2012年全球LED灯泡出货量达7.35亿只,2013年预计将增长到12.25亿只;预计到2014年将迎来LED灯泡市场的引爆点,届时LED灯泡价格将会降至10美元以下,出货量预计较2013年增长约85%,达22.70亿只;而到2015年出货量将进一步增长至39亿只。

  高能效驱动器是LED通用照明的重点

  要将LED照明的节能功能发挥至最高,就需要高能效的LED驱动器。我们以LED灯泡为例,典型的LED灯泡包含LED阵列、驱动电路、散光罩、散热片和螺旋灯头等主要组件,见图2的左半部分。就驱动电路而言,高能效LED驱动器IC无疑是其中的重点。图2的右半部分显示了典型的LED灯泡驱动电路,其中使用的是典型的独立式LED驱动器。



  图2:a)典型LED灯泡剖视图(左图);b)典型LED灯泡驱动电路(右图)

  要发挥LED通用照明的高能效优势,LED驱动器存在多重挑战。首先就是能效至关重要。以LED灯泡为例,其形状固定,散热受限,采用高能效LED驱动器则可帮助将更多电能转化为光能,帮助散热。其次,LED灯泡空间有限,需要更大的散热片面积,较大功率的灯泡尤为如此。此外,LED正在迅速变化,提供多种选择,这对LED驱动器的选择也构成了挑战。由于LED灯泡空间有限,故须减小驱动电子电路的尺寸以使剩余空间增多,配合散热。LED通用照明涵盖不同功率等级,故须优化LED驱动器选择,以配合不同照明及功率要求。出于安规、LED选择等因素,设计人员还须考虑是采用隔离还是非隔离拓扑结构,由此也影响到LED驱动器的选择。

12下一页

本文导航

  • 第 1 页:配合通用照明趋势的安森美半导体高能效、更智能LED驱动器方案
  • 第 2 页:安森美半LED通用照明的驱动器方案
隆达电子除磊晶、晶粒及系统外,然后用真空吸嘴将LED芯片吸起移动位置,所以需求量很大,结合了夏普的TigerZenigata15WLED灯,带动产业成长动能主要来自照明应用,同时保持极低的侧高。与需要焊接在铝质或陶瓷材料的现有LED阵列封装上相比,即除了发光管以外都依据原有灯具要素,中艾电源并且也是最耐用及功率效能最佳的系统解决方案。但是传统的控制方法只能针对峰值电流进行调节,却是中国LED产业发展“多、乱、差”的尴尬一面。虽然,LED防水驱动电源。 希望在“十二五”期间,

  如果说非得对2012年LED行业重大事件做出盘点的话,雷士照明至少会占据重要两席。首先是去年5月吴长江出走引发的内斗风波,令雷士上下身心俱疲;其次则是年底德豪润达斥资16.5亿元收购雷士20.04%的股权,与雷士合演了一出“巨头联姻”的好戏。

  对于德豪润达与雷士的联姻,业内人士多表示看好。雷士在传统照明领域拥有成熟的品牌和完善的行销管道,作为国内照明业界翘楚不虚。然而,在新兴的LED照明领域,前期雷士继续沿革其OEM发展模式,技术沉淀有限,特别是上游芯片领域可谓完全空白。核心技术的缺失,导致雷士未来竞争力堪忧,此番联姻正好为雷士发展铺就了“芯”光大道。

  而德豪润达在过去3年内,斥资90亿元,完成了从LED外延片到芯片,从封装到应用(灯具、显示幕)的完整的产业链布局。因此,如何将产品与技术转化为商业利润,继而打造LED全球品牌,成为德豪润达需要思考的首要问题。此番通过入股雷士,利用雷士业已成熟的品牌及完善的行销管道,德豪润达有可能轻松打开抢占LED照明市场的关键通路。

  吴长江对外声称,与德豪润达的合作,为行业整合建立了标杆,将带领着行业由前期的散乱发展逐渐趋于规范。此番联姻,亦标志著LED行业洗牌下的整合浪潮已暗流涌动。


  上游:横向整合快速扩张

  2010年,上游芯片短缺的状况从年初持续到年尾,令芯片厂商赚得盆满钵满,一场围绕上游芯片的疯狂投资就此展开。然而2011年年初,芯片产能过剩警报已然拉响。

  芯片光电董事长李秉杰认为,大陆对LED产业的补助行将结束,2015年大陆芯片企业可能将仅存5家。2013年底凡MOCVD数量在10台以下的芯片企业将消失。据了解,大陆拥有芯片企业60余家,这意味着将有超过3/4的企业会被淘汰。

  大企业希望通过兼并购扩张实力,巩固自己的龙头地位,中小企业则希望被并购得以保存,这在台厂晶电的系列并购中尤为明显。

  去年8月9日,晶电与广稼举办说明会,广稼与晶电通过股份转换,成为晶电的子公司。广稼普通股4.85股换发晶电1股,交易金额40亿新台币。晶电尤永生表示,广稼目前的产能规模,晶电至少投资80亿新台币才能达到,因此对晶电来说是划算交易。此前,晶电就并购了国联光电、元砷光电和连勇光电,成为晶电称霸芯片领域的筹码。

  广稼戴子翔则表示,广稼纳入晶电后,可利用晶电现有的技术及销售平台,利用为晶电代工来扭转广稼亏损的局面。同时,晶电不再受转投资之累,可以全面提升经营业绩。

  同年11月,三安光电发布公告,旗下全资子公司厦门三安光电科技,拟使用自筹资金5.06亿元(人民币)认购台湾璨圆光电1.2亿股私募普通股,每股价格约为19.6元新台币。本次方案实施后,三安光电将持有璨圆光电19.9%的股份,成为璨圆光电最大股东。

  外界看来,三安光电作为目前国内LED外延片及芯片龙头,产能规模庞大,仅次于台湾晶电,产品集中在中低端LED芯片市场。璨圆是台湾第二大芯片厂商,主要市场集中在台湾本土和韩国等亚洲市场,在高端芯片市场拥有较好客户基础,两者结合可优势互补。

  璨圆光电董事长简奉任表示,璨圆光电产能太小,成本控制能力弱,而三安光电产能规模大,成本报价低。与三安光电合作,璨圆除了可以降低成本,还可以利用三安光电抢占大陆芯片市场。

  对三安来说,随着中低端芯片市场的日益饱和,毛利率大幅下滑,三安开始在高端LED芯片产品研发上发力。同时,三安光电的市场主要局限在国内,急需打破专利壁垒进军海外市场。璨圆光电在LED芯片技术上拥有200多项专利,正是三安光电的理想合作伙伴。

  业内人士透露,上游芯片企业间整合并购的主要动力在于扩大产能和市场,获得新技术及拥有对方专利。因此,他们选择的并购物件都是具有技术,专利或是市场优势的企业。

  中下游:纵向整合抢占市场

  自2012年开始,LED芯片及封装产能的过剩,令整个行业身心俱疲。导致行业关注的焦点开始向更具市场潜力的下游照明应用领域倾斜,LED照明成为新1轮的投资热点。

  2012年上半年,中国LED室内照明市场整体规模呈现大幅增长,同比增幅接近36%。同时,新增LED室内照明企业数量近1000家。预计2012年全年,中国LED室内照明市场规模有望突破250亿元,同比增速超过40%。

  去年年初,国内知名LED封装企业瑞丰光电与雷士照明签署合作协定,欲联手成立合资公司从事照明用LED封装产品研发及制造,该公司LED器件主要供应给雷士照明。

  瑞丰光电选择与管道制胜的雷士照明合作,看重的正是雷士丰富的市场管道资源,为瑞丰光电进军下游LED照明应用打开出海口。然而,该项目随着吴长江的出走无疾而终。

  而后,雷士选择与德豪润达联姻,则更具代表性。德豪润达号称在LED领域具有完整的产业链,然而据了解,德豪润达去年在LED领域营收不足4亿元,其中2.5亿元来自之前并购的锐拓显示,除去芯片及封装方面的营收,德豪润达的LED照明营收不足5千万。

  雷士有成熟管道和品牌影响,然而以OEM为主的雷士上中游领域尚属空白。之前有业内人断言,未来LED照明十强不会出现雷士影子,因此雷士此举看似偶然,更是必然。

  而对处于转型十字路口的传统照明企业来说,并购成其快速介入LED领域重要方式。

  去年5月,百分百照明斥资4000万元收购某家俱有英资背景的LED照明企业。在此之前,阳光照明以1350万元的价格拿下杭州汉光照明50%的股权。又以123.76万元的代价持有日本LIREN公司30%的股权,获得了LIREN公司在LED照明领域先进技术。

  并购易 整合难

  当前,行业正处于后洗牌时代,倒闭潮时有发生,包括愿景光电、浩博光电、大眼界光电等知名企业,已成为行业“先烈”。要发展,前提条件是要求得生存。只要是希望发展LED照明的企业都希望用并购整合的方式来弥补自己在LED产品、品牌与管道方面的不足。

  由于隶属于不同的创业者,前期两家公司在管理、文化、价值观念等方面都存在明显的差异。因此,业内人士认为,虽然并购产生的交易可以立竿见影,然而,要产生预期的效益还在于后期的磨合。因此,企业对于整合的效果并不能追求马到功成,只能是循序渐进。

  正如德豪润达与雷士的联姻,在外界看来,两家企业虽然同属上市企业,实力雄厚。然而,两家企业之前在LED领域表现并不尽人意,甚至有人调侃两家结合是“弱弱结合”。

  对于雷士来说,如何依讬德豪润达上中游产业链优势快速降低成本,为自己终端行销网络提供高性价比的产品,然而这对产品集中中低端的德豪润达来说有点困难;而对于德豪润达来说,希望利用雷士成熟品牌及管道,打破自身90亿元投资,销售额仅4亿元的尴尬局面。然而,刚刚结束内斗风波的雷士,想要完全恢复其管道方面的优势还需要假以时日。

  然而,不管是上游的横向整合,还是中下游的纵向整合,并购双方首先得明确自己的意图和目标,专利?人才?市场?然后再照着预期的目标同心协力,才能走得更好更远。

12下一页

本文导航

  • 第 1 页:国内LED行业现状:并购易,整合难
  • 第 2 页:我国半导体产业规模年增长超过35%

  近年来因能源短缺,节能议题日趋受到重视,目前的照明设备为达到低功率消耗、寿命长、无污染、启动时间短等需求,已经大量採用高亮度的发光二极体(LED)取代传统的照明光源。LED驱动器则提供恆定电流控制,使得LED维持稳定的发光亮度与饱和的色彩频谱,为了符合工业与节能标準的显示萤幕系统设计,LED驱动器必须具备自动省电特性。

  降低LED驱动器 功耗损失为当务之急

  LED于讯息萤幕、交通号誌及部分影像萤幕应用上,只有部分时间和区域会被驱动器点亮(图1),汽车测速或限速显示装置的黑色区域是LED熄灭部分;红色及白色则为LED被点亮部分。若是在LED熄灭的区域,LED驱动器还维持在正常运作,只是在不点亮LED的状态下,长时间下来,整面萤幕的功率消耗将会提高,且驱动器寿命减短,无法达到省电的效果。为了达到省电功能,当车辆经过特定路段,LED测速装置会自动点亮并告知驾驶员车速,经过一段时间,若无车子通过,测速装置会自动熄灭,LED不会消耗电流,驱动器即自动进入睡眠模式,如具有省电模式的LED驱动器,在进入睡眠模式后,仅消耗0.1毫瓦以下的功率,可使整面萤幕的平均消耗功率大为降低。而降低驱动器的散热功率也能提升整体的电源效率,方法包括降低电源电流(IDD)、电源电压(VDD)、LED电压(VLED)及输出端耐受电压(VDS)等。透过下列公式运算可得知驱动器的散热功率:


  图1 汽车测速或限速显示装置

  PSD=PDN+PDM PSD:系统上全部驱动器的散热功率 PDN:系统上正在运作的驱动器散热功率 其中,PDN=(IDD×VDD)+IOUT×Duty×VDSx16)×N,而N为正在运作的驱动器总数量;PDM:系统上没有运作的驱动器散热功率,其中,PDM=IDD×VDD×M,而M为没有运作的驱动器总数量。

  此外,可透过下列运算式得知驱动器功率损失: PDRVLOSS=PALLDRV - PUSEDRV PDRVLOSS:未使用到的驱动器功率损失 PALLDRV:所有驱动器的功率消耗 PUSEDRV:正在点亮的驱动器功率消耗 然而,下列数种方法可达到降低功率损失的效果,但相对须付出成本或影响整面萤幕的显示品质。其中,产业界已开发出两种方式:强制性休眠模式(Sleep Mode)及零节能省电模式(0-Power Mode)的LED驱动器,可达到上述省电的需求,且不会有其他负面影响。

  传统LED驱动器 省电方式有诸多缺陷

  传统LED驱动器省电方式包括低操作电压和R-EXT接脚浮接,其运作塬理如下:

  ?低操作电压

  将整面萤幕上的驱动器操作在允许的最低额定电压以下,如3伏特,透过关係式P=I×V可知,当供应电压降低,功率消耗亦跟着降低,以达到省电目的。但此方法受到应用条件的限制,当VDD与VLED共用时,若使用蓝光或绿光LED,就需要比较高的电压(图2)。


  图2 当VDD与VLED共用时的省电方式

  ?R-EXT接脚浮接

  R-EXT脚位浮接后(图3),将关闭驱动器内部的电流调整器,大约会有50%的省电效果,然而,此方式也会增加系统设计成本和复杂度,且某些IC浮接后可能出现异常。


  图3 当R-EXT接脚浮接时的省电方式


12下一页

本文导航

  • 第 1 页:能够兼顾显示和成本的创新LED省电方案介绍
  • 第 2 页:新LED驱动器的设计优势
其封装可能需要在PCB上额外划分一个散热区,中艾电源LED防水驱动电源

  照明用电是全球能耗的一项重要来源。据推算,中国照明用电约占全社会用电量的12%左右。在各种照明灯具中,历史悠久但能效较低的白炽灯的应用仍然非常广泛,如果限制低能效光源的使用、同时大力地推广及应用更高能效及环保的光源,将利于节能。

  因此,包括中国在内,世界上多个国家制定政策,分阶段淘汰白炽灯泡。如中国计划于2015年60W以上普通照明用白炽灯泡全部淘汰。荧光灯及紧凑型荧光灯(CFL)的能效比白炽灯高,在市场上已经应用多年。但荧光灯含剧毒物质汞,所引发的环保顾虑越来越多。

  相比较而言,LED在发光效率等各方面的性能不断提升,还兼具环保及长寿命特性,越来越受重视。实际上,LED筒灯和改装灯泡已经拥有比白炽灯、卤素灯或CFL等现在照明技术更高的能效。而在成本方面,研究发现,与2010年相比,LED的价格已经加速下降(每年下降13%至24%),预计未来几年仍会持续下降,将帮助降低LED灯泡及灯具的成本。

  因此,世界各国纷纷看好及推动LED照明产业的发展。例如,中国国家发改委发布《半导体照明节能产业规划》,规划到2015年LED功能性照明产品市场占有率达20%以上,LED照明节能产业产值年增长30%左右,2015年产值达4,500亿元(折合720亿美元)。

  LED通用照明应用及发展前景

  LED除了广泛应用移动设备、中大尺寸液晶显示屏(LCD)背光及LED标牌等领域外,如今也在越来越多地用于LED汽车内部/外部照明,如前照灯、雾灯、尾灯、停车灯、仪表盘背光、车顶灯、阅读灯和氛围灯等,以及住宅照明和建筑物装饰照明等LED通用照明。

  LED通用照明应用覆盖宽广功率范围,低至3W到15W的LED住宅照明,中等功率有如15W至 75W的商业及建筑物装饰性照明,高至75W到250W的户外及基础设施照明,典型照明产品有如MR16/GU10灯、E27/A19灯泡、镇流器、筒灯、T8灯管、街灯等。


  图1:典型LED通用照明应用

  LED通用照明应用极具发展前景。各种LED通用照明灯具中,近期来看,LED灯泡(如A19 LED灯泡)的发展势头惊人。据统计,2012年全球LED灯泡出货量达7.35亿只,2013年预计将增长到12.25亿只;预计到2014年将迎来 LED灯泡市场的引爆点,届时LED灯泡价格将会降至10美元以下,出货量预计较2013年增长约85%,达22.70亿只;而到2015年出货量将进一步增长至39亿只。

  高能效驱动器是LED通用照明的重点

  要将LED照明的节能功能发挥至最高,就需要高能效的LED驱动器。我们以LED灯泡为例,典型的 LED灯泡包含LED阵列、驱动电路、散光罩、散热片和螺旋灯头等主要组件,见图2的左半部分。就驱动电路而言,高能效LED驱动器IC无疑是其中的重点。图2的右半部分显示了典型的LED灯泡驱动电路,其中使用的是典型的独立式LED驱动器。


  图2:(a)典型LED灯泡剖视图(左图);(b)典型LED灯泡驱动电路(右图)

  要发挥LED通用照明的高能效优势,LED驱动器存在多重挑战。首先就是能效至关重要。以LED灯泡为例,其形状固定,散热受限,采用高能效LED驱动器则可帮助将更多电能转化为光能,帮助散热。其次,LED灯泡空间有限,需要更大的散热片面积,较大功率的灯泡尤为如此。此外,LED正在迅速变化,提供多种选择,这对LED驱动器的选择也构成了挑战。由于LED灯泡空间有限,故须减小驱动电子电路的尺寸以使剩余空间增多,配合散热。LED通用照明涵盖不同功率等级,故须优化LED驱动器选择,以配合不同照明及功率要求。出于安规、LED选择等因素,设计人员还须考虑是采用隔离还是非隔离拓扑结构,由此也影响到LED驱动器的选择。

  安森美半导体配合LED通用照明的驱动器方案

  安森美半导体积极推动高能效创新,包括LED照明在内的高能效电子创新,涉及LED照明的众多细分市场,如前文提到的移动设备、LCD背光、LED标牌、汽车及通用照明等。其中,LED通用照明如今是安森美半导体在照明市场的重点。在LED通用照明市场,安森美半导体的策略是充分利用公司宽广阵容的模拟电源IC、分立器件及先进微封装,提供与众不同的高能效LED驱动器方案。

  安森美半导体提供覆盖涵盖宽广功率范围及不同拓扑结构的LED驱动器方案。安森美半导体能用于低功率LED通用照明应用的驱动器包括NCL30000、NCL30002及NCL3008x系列等。其中,NCL30000是单段式功率因数校正(PFC)、支持TRIAC调光的LED驱动器,采用次级端控制器,支持反激/降压/降压-升压等拓扑结构。NCL30002也是单段式功率因数校正 LED驱动器,支持降压拓扑结构,提供±3%的电流容限。NCL3008x系列目前包括NCL30080、NCL30081、NCL30082和 NCL30083等器件,是新推出的高能效准谐振控制器,用于低功率LED照明应用。

  值得一提的是,NCL3008x系列采用初级端稳流(Primary Side Regulation)技术(也称初级端控制或原边控制)这种新颖的控制方法,省去次级端控制电路及光耦,能够精确地从初级端对LED电流进行恒流稳流,帮助简化PCB布线、节省电路板空间、提升能效,并简化安全分析(见图3左)。此外,它还具有高稳流精度、支持宽正向压降(Vf)范围、低电磁干扰(EMI)及集成强固保护特性等众多优势。这系列器件提供0.8至0.9的功率因数,符合美国“能源之星”对功率大于5W的LED灯泡在功率因数方面的要求(PF》0.7)。


  图3:(a) NCL3008x新颖的初级端控制技术(左);(b) 基于NCL3008x的A19灯泡参考设计(右)

  安森美半导体还开发了基于NCL30082的紧凑型A19 LED灯泡的参考设计(见图2右侧)。这参考设计优化用于隔离反激或非隔离降压-升压拓扑结构,优化用于10W LED照明应用。它采用谷底填充PFC来满足“能源之星”功率因数高于0.7的要求。PCB及元件的尺寸目标是22x60mm柱体。测试显示,此参考设计提供高能效、高功率因数及高稳流精度。

  而在中等功率及大功率LED照明方面,安森美半导体同样提供丰富的产品组合,满足客户不同应用需求。其中既包含单段式及组合控制器,也包含传统的两段式(PFC段+DC-DC段)控制器,覆盖从15W至400W的宽广功率范围,如图4所示。


  图4:安森美半导体应用于中大功率LED通用照明的驱动器

  从图4中可以看出,在中等功率LED通用照明应用中,可以采用NCL30000及NCL30001 这样的单段式功率因数校正LED控制器;而在功率更大的应用中,可以采用NCL30051和NCP1910这样的高能效组合控制器。以NCL30051为例,这是一款功率因数校正(PFC)及谐振半桥组合控制器,优化用于离线LED照明应用,能够为降压DC-DC转换器/LED驱动器提供恒定电压。这器件集成了一个临界导电模式(CrM) PFC控制器及一个半桥谐振控制器,并内置600V驱动器,针对离线电源应用进行了优化,具备了所有实现高能效、小外形因数设计所需的特性。

  除了上述单段式方案,设计人员还可以根据应用需求选择传统的两段式(PFC段+DC-DC转换段)方案。具体而言,PFC段可选用的控制器包括NCP1653、NCP1631、NCP1611/NCP1612及NCP1608等。其中,NCP1611 /2是增强型高能效PFC控制器,基于创新的电流控制频率反走(CCFF)架构,在PFC电感电流超过设定值时,电路通常工作在临界导电模式(CrM),而当电流低于预设值时,将开关频率线性降低至约20kHz,此时电流为零。CCFF架构同时将额定负载工作能效和轻载能效提升至最高,特别是将待机损耗降至最低等典型应用包括可用于平板电视、一体式计算机和大功率电源适配器,以及LED照明电源及驱动器、可调光荧光灯镇流器等。

  在DC-DC段,可以选用的器件包括NCP1398、NCP1380、NCP1288和NCL30105等。除了这些器件,安森美半导体还在开发更多的新产器,满足客户的更宽应用需求。

12下一页

本文导航

  • 第 1 页:安森美LED驱动经典方案:如何将节能功能发挥至最高?
  • 第 2 页:智能LED照明的优势及发展预测
未来LED显示屏产品价格仍将保持下行趋势。企业营收保持增长,用尽余量时,允许使用体积小巧的印刷电路板(PCB)。


此外,

  在白色LED模块需求以照明用途为中心不断高涨的情况下,日本爱德克公司(IDEC)针对将组合蓝色LED元件和黄色荧光材料实现白色光的模块(伪白色LED模块),开发出了新的制造工艺(图1)*1。新工艺与传统工艺的不同在于通过树脂封装基板上LED元件的工序,将含有荧光材料的凝胶状硅树脂片材贴在LED元件上加热封装。与传统工艺相比,新工艺可将封装工序所需时间缩短至1/9,而且可实现稳定的品质并简化设备。


  图1:采用新工艺生产的LED模块(a)以及凝胶状树脂片材(b)

  通过组合使用蓝色LED元件和黄色荧光材料来实现白色光。LED元件的封装采用含有荧光材料的凝胶状硅树脂片材(日东电工制造)。

  摄影:(a)为爱德克、(b)为日东电工

  *1:实现白色光的方式还包括组合使用光的三原色——红色、绿色和蓝色的LED元件。不过,其用途多为显示器的光源。在照明用途中,伪白色LED模块是主流。

  没有产生偏差的要因

  图2中是传统工艺与新工艺之间的比较*2。传统工艺通过含有荧光材料的液状树脂来封装LED元件。首先,在基板上的LED元件周围形成用来阻挡树脂流出的“坝”,并使其硬化。然后,搅拌液状树脂与荧光材料、浇注到基板上的坝内。最后,对浇注的树脂进行热硬化处理。整个封装工序所需要的时间约为六个小时。


  图2:传统工艺与新工艺在封装工序上的比较

  传统工艺在整个封装工序上(形成坝并使其硬化、搅拌树脂和荧光材料、浇注液状树脂并使其硬化)需要花费约六个小时。新工艺只需将凝胶状片材贴在LED元件上进行硬化即可,因此仅需40分钟。由本刊根据爱德克的资料制作。

  *2:此外,还有通过含有荧光材料的固体树脂片材来封装LED元件的制造工艺。该制造工艺容易稳定质量,不过无法单独通过固体树脂片材进行封装,需要另外使用液体树脂进行封装,因此生产效率较低。

  但在这种制造工艺中,存在树脂和荧光材料未均匀混合、荧光体在树脂中沉淀、浇注的树脂量多少不一等诸多会造成品质不稳定的问题,难以维持质量。如果封装工序的品质不均,就会产生色度偏差,可能会影响LED模块的性能。

  而新工艺则是在基板上的LED元件上粘贴凝胶状的树脂片材、加热至约150℃,经过约40分钟后片材硬化,由此完成封装,因此可大幅缩短所需要的时间。而且,凝胶状树脂片材基本上不会出现荧光材料沉淀等会导致封装工序质量不均的因素,因此可以轻松提高作为LED模块的性能。比如,关于前面提到的色度偏差,与传统工艺相比,新工艺可将偏差降至一半左右。而且,直至完成封装的工序数量也很少,因此生产设备也可以实现简化。

  另外新工艺还改善了热循环特性,虽然爱德克原本并没有这方面的打算。以分别在低温环境下(-55℃)和高温环境下(85℃)暴露30分钟为一个循环开展试验时发现,采用传统工艺法生产的模块在约200次循环后开始出现故障,而采用新工艺生产的模块在2000多次循环后也没有出现故障。

12下一页

本文导航

  • 第 1 页:白色LED模块制造新工艺,通过凝胶状片材完成封装
  • 第 2 页:改进分子构造保持凝胶状

  LED 的高可靠性(使用 寿命超过 50,000 个小时)、较高的效率(》120 流明/瓦)以及近乎瞬时的响应能力使其成为极具吸引力的光源。与白炽灯泡 200mS 的响应时间相比,LED 会在短短 5nS 响应时间内发光。因此,目前它们已在汽车行业的刹车灯中得到广泛采用。

  驱动 LED

  驱动 LED 并非没有挑战。可调的亮度需要用恒定电流来驱动 LED,并且无论输入电压如何都必须要保持该电流的恒定。这与仅仅将白炽灯泡连接到电池来为其供电相比更具有挑战性。

  LED 具有类似于二极管的正向 V-I 特性。在低于 LED 开启阈值(白光 LED 的开启电压阈值大约为 3.5V)时,通经该 LED 的电流非 常小。在高于该阈值时,电流会以正向电压形式成指数倍递增。这就允许将 LED 定型为带有一个串联电阻的电压源,其中带有一则 警示说明:本模型仅在单一的工作 DC 电流下才有效。如果 LED 中的 DC 电流发生改变,那么该模型的电阻也应随即改变,以反映新 的工作电流。在大的正向电流下,LED 中的功率耗散会使设备发热,此举将改变正向压降和动态阻抗。在确定 LED 阻抗时充分考虑散热环境是非常重要的。

  当通过降压稳压器驱动 LED 时,LED 常常会根据所选的输出滤波器排列来传导电感的 AC 纹波电流和 DC 电流。这不仅会提高 LED 中电流的 RMS 振幅,而且还会增大其功耗。这样就可提高结温并对 LED 的使用寿命产生重要影响。如果我们设定一个 70%的光输出限制作为 LED 的使用寿命,那么 LED 的寿命就会从 74 摄氏度度下的 15,000 小时延长到 63 摄氏度度下的 40,000 小时。LED 的功率损耗由 LED 电阻乘以 RMS 电流的平方再加上平均电流乘以正向压降来确定。由于结温可通过平均功耗来确定,因此即使是 较大的纹波电流对功耗产生的影响也不大。例如,在降压转换器中,等于 DC 输出电流 (Ipk-pk = Iout) 的峰至峰纹波电流会增加不超 过 10% 的总功率损耗。如果远远超过上面的损耗水平,那么就需要降低来自电源的 AC 纹波电流以便使结温和工作寿命保持不变。 一条非常有用的经验法则是结温每降低 10 摄氏度,半导体寿命就会提高两倍。实际上,由于电感器的抑制作用,因此大多数设计就 趋向于更低的纹波电流。此外,LED 中的峰值电流不应超过厂商所规定的最大安全工作电流额定值。

  LED驱动电源的拓扑结构选择分析

  采用AC-DC电源的LED照明应用中,电源转换的构建模块包括二极管、开关(FET)、电感及电容及电阻等分立元件用于执行各自功能,而脉宽调制(PWM)稳压器用于控制电源转换。电路中通常加入了变压器的隔离型AC-DC电源转换包含反激、正激及半桥等拓扑结构,参见图3,其中反激拓扑结构是功率小于30 W的中低功率应用的标准选择,而半桥结构则最适合于提供更高能效/功率密度。就隔离结构中的变压器而言,其尺寸的大小与开关频率有关,且多数隔离型LED驱动器基本上采用“电子”变压器。


  图1:LLC半桥谐振拓扑结构

  采用DC-DC电源的LED照明应用中,可以采用的LED驱动方式有电阻型、线性稳压器及开关稳压器等,基本的应用示意图参见图4。电阻型驱动方式中,调整与LED串联的电流检测电阻即可控制LED的正向电流,这种驱动方式易于设计、成本低,且没有电磁兼容(EMC)问题,劣势是依赖于电压、需要筛选(binning) LED,且能效较低。线性稳压器同样易于设计且没有EMC问题,还支持电流稳流及过流保护(fold back),且提供外部电流设定点,不足在于功率耗散问题,及输入电压要始终高于正向电压,且能效不高。开关稳压器通过PWM控制模块不断控制开关(FET)的开和关,进而控制电流的流动。


  图2:常见的DC-DC LED驱动方式

  开关稳压器具有更高的能效,与电压无关,且能控制亮度,不足则是成本相对较高,复杂度也更高,且存在电磁干扰(EMI)问题。LED DC-DC开关稳压器常见的拓扑结构包括降压(Buck)、升压(Boost)、降压-升压(Buck-Boost)或单端初级电感转换器(SEPIC)等不同类型。其中,所有工作条件下最低输入电压都大于LED串最大电压时采用降压结构,如采用24 Vdc驱动6颗串联的LED;与之相反,所有工作条件下最大输入电压都小于最低输出电压时采用升压结构,如采用12 Vdc驱动6颗串联的LED;而输入电压与输出电压范围有交迭时可以采用降压-升压或SEPIC结构,如采用12 Vdc或12 Vac驱动4颗串联的LED,但这种结构的成本及能效最不理想。

  采用交流电源直接驱动LED的方式近年来也获得了一定的发展,其应用示意图参见图5。这种结构中,LED串以相反方向排列,工作在半周期,且LED在线路电压大于正向电压时才导通。这种结构具有其优势,如避免AC-DC转换所带来的功率损耗等。但是,这种结构中LED在低频开关,故人眼可能会察觉到闪烁现象。此外,在这种设计中还需要加入LED保护措施,使其免受线路浪涌或瞬态的影响。


  图3:直接采用交流驱动LED的示意图


12下一页

本文导航

  • 第 1 页:如何选择LED驱动电源的拓扑结构
  • 第 2 页:LED拓扑选择示例分析
令我们备感欣喜的是,

  LED 的高可靠性(使用 寿命超过 50,000 个小时)、较高的效率(》120 流明/瓦)以及近乎瞬时的响应能力使其成为极具吸引力的光源。与白炽灯泡 200mS 的响应时间相比,LED 会在短短 5nS 响应时间内发光。因此,目前它们已在汽车行业的刹车灯中得到广泛采用。

  驱动 LED

  驱动 LED 并非没有挑战。可调的亮度需要用恒定电流来驱动 LED,并且无论输入电压如何都必须要保持该电流的恒定。这与仅仅将白炽灯泡连接到电池来为其供电相比更具有挑战性。

  LED 具有类似于二极管的正向 V-I 特性。在低于 LED 开启阈值(白光 LED 的开启电压阈值大约为 3.5V)时,通经该 LED 的电流非 常小。在高于该阈值时,电流会以正向电压形式成指数倍递增。这就允许将 LED 定型为带有一个串联电阻的电压源,其中带有一则 警示说明:本模型仅在单一的工作 DC 电流下才有效。如果 LED 中的 DC 电流发生改变,那么该模型的电阻也应随即改变,以反映新 的工作电流。在大的正向电流下,LED 中的功率耗散会使设备发热,此举将改变正向压降和动态阻抗。在确定 LED 阻抗时充分考虑散热环境是非常重要的。

  当通过降压稳压器驱动 LED 时,LED 常常会根据所选的输出滤波器排列来传导电感的 AC 纹波电流和 DC 电流。这不仅会提高 LED 中电流的 RMS 振幅,而且还会增大其功耗。这样就可提高结温并对 LED 的使用寿命产生重要影响。如果我们设定一个 70%的光输出限制作为 LED 的使用寿命,那么 LED 的寿命就会从 74 摄氏度度下的 15,000 小时延长到 63 摄氏度度下的 40,000 小时。LED 的功率损耗由 LED 电阻乘以 RMS 电流的平方再加上平均电流乘以正向压降来确定。由于结温可通过平均功耗来确定,因此即使是 较大的纹波电流对功耗产生的影响也不大。例如,在降压转换器中,等于 DC 输出电流 (Ipk-pk = Iout) 的峰至峰纹波电流会增加不超 过 10% 的总功率损耗。如果远远超过上面的损耗水平,那么就需要降低来自电源的 AC 纹波电流以便使结温和工作寿命保持不变。 一条非常有用的经验法则是结温每降低 10 摄氏度,半导体寿命就会提高两倍。实际上,由于电感器的抑制作用,因此大多数设计就 趋向于更低的纹波电流。此外,LED 中的峰值电流不应超过厂商所规定的最大安全工作电流额定值。

  LED驱动电源的拓扑结构选择分析

  采用AC-DC电源的LED照明应用中,电源转换的构建模块包括二极管、开关(FET)、电感及电容及电阻等分立元件用于执行各自功能,而脉宽调制(PWM)稳压器用于控制电源转换。电路中通常加入了变压器的隔离型AC-DC电源转换包含反激、正激及半桥等拓扑结构,参见图3,其中反激拓扑结构是功率小于30 W的中低功率应用的标准选择,而半桥结构则最适合于提供更高能效/功率密度。就隔离结构中的变压器而言,其尺寸的大小与开关频率有关,且多数隔离型LED驱动器基本上采用“电子”变压器。


  图1:LLC半桥谐振拓扑结构

  采用DC-DC电源的LED照明应用中,可以采用的LED驱动方式有电阻型、线性稳压器及开关稳压器等,基本的应用示意图参见图4。电阻型驱动方式中,调整与LED串联的电流检测电阻即可控制LED的正向电流,这种驱动方式易于设计、成本低,且没有电磁兼容(EMC)问题,劣势是依赖于电压、需要筛选(binning) LED,且能效较低。线性稳压器同样易于设计且没有EMC问题,还支持电流稳流及过流保护(fold back),且提供外部电流设定点,不足在于功率耗散问题,及输入电压要始终高于正向电压,且能效不高。开关稳压器通过PWM控制模块不断控制开关(FET)的开和关,进而控制电流的流动。


  图2:常见的DC-DC LED驱动方式

  开关稳压器具有更高的能效,与电压无关,且能控制亮度,不足则是成本相对较高,复杂度也更高,且存在电磁干扰(EMI)问题。LED DC-DC开关稳压器常见的拓扑结构包括降压(Buck)、升压(Boost)、降压-升压(Buck-Boost)或单端初级电感转换器(SEPIC)等不同类型。其中,所有工作条件下最低输入电压都大于LED串最大电压时采用降压结构,如采用24 Vdc驱动6颗串联的LED;与之相反,所有工作条件下最大输入电压都小于最低输出电压时采用升压结构,如采用12 Vdc驱动6颗串联的LED;而输入电压与输出电压范围有交迭时可以采用降压-升压或SEPIC结构,如采用12 Vdc或12 Vac驱动4颗串联的LED,但这种结构的成本及能效最不理想。

  采用交流电源直接驱动LED的方式近年来也获得了一定的发展,其应用示意图参见图5。这种结构中,LED串以相反方向排列,工作在半周期,且LED在线路电压大于正向电压时才导通。这种结构具有其优势,如避免AC-DC转换所带来的功率损耗等。但是,这种结构中LED在低频开关,故人眼可能会察觉到闪烁现象。此外,在这种设计中还需要加入LED保护措施,使其免受线路浪涌或瞬态的影响。


  图3:直接采用交流驱动LED的示意图


12下一页

本文导航

  • 第 1 页:如何选择LED驱动电源的拓扑结构
  • 第 2 页:LED拓扑选择示例分析

公司联系资料

中山市中艾电子有限公司
所在地区:
广东省 中山市

免责声明:本站信息均来自互联网或由用户自行发布,本站不对以上信息的真实性、准确性、合法性负责,如果有侵犯到您的利益,请您来函告知我们,我们将尽快删除

华企黄页分类信息   huaqi9.com